
FINAL REPORT

FOR THE

SUMC RECONFIGURABLE MICRO-ASSEMBLER

17 DECEMBER 1973

(NASA-CR-120178) SUVC RECONFIGURABLE N74-19832'
IICEO-ASSEMBLER Final Report
(McDonnell-Douglas Astronautics Co.) 26 p
HC $4.50 CSCL 09B Unclas

G3/08 16489

PREPARED FOR:

NATIONAL AERONAUTICS & SPACE ADMINISTRATION
MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, ALABAMA 35812

C~~ 4'-PREPARED BY:

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY
S5301 BOLSA AVENUE
HUNTINGTON BEACH, CALIFORNIA 92647

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

. ARDS D. W. GIEDT
INCIPAL INVESTIGATOR PROJECT MANAGER

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

PREFACE

This document constitutes the final report for the Micro-Assembler segment
(S4/4) of the Techniques for the Generation of Support Software project being
performed for NASA MSFC under Contract NAS8-27202.

If additional information is required, please contact any of the following
McDonnell Douglas or NASA representatives:

o Mr. D. W. Giedt, Project Manager
Huntington Beach, California
Telephone: (714) 896-4908

o Mr. A. J. Edwards, Principal Investigator
Huntington Beach, California
Telephone: (714) 896-3872

o Mr. G. M. Jones, Contract Administrator
Huntington Beach, California
Telephone: (714) 896-2795

o Mr. B. C. Hodges, Project COR, S&E-COMP-C
Marshall Space Flight Center, Alabama
Telephone: (205) 453-1385

23

CONTENTS

Page

I. SCOPE 1

II. TECHNICAL APPROACH 1

III. MICRO-ASSEMBLER LANGUAGE CONCEPT 1

IV. MICRO-ASSEMBLER LANGUAGE SYNTAX 1

V. MICRO-ASSEMBLER UTILIZATION 2

VI. NEW ASSEMBLER DIRECTIVES AND FUNCTIONS 3

1. Option for Micro-Assembly 3

2. Rescan Source Operand 3

3. Micro-Instruction Statement Processing 3

4. Default Values for Micro-Instruction Fields 3

5. Description of IROM Data for the Micro-Assembly Module 4

6. Micro-Assembly Diagnostics 4

7. Object Output 5

VII. USER MANUAL DOCUMENTATION 7

APPENDIX A SEMANTIC DESCRIPTION OF EXAMPLE MICROMAC 8
INSTRUCTION SET

APPENDIX B MICRO-INSTRUCTION FIELD VALUE DESCRIPTION 10

APPENDIX C MICRO-INSTRUCTION FIELD DESCRIPTION 11

APPENDIX D EXAMPLE SUMC MICRO-INSTRUCTION DEFINITION 12

APPENDIX E EXAMPLE SUMC MICRO-INSTRUCTION CODE 13

APPENDIX F USER MANUAL CHANGE PAGES 14

I. SCOPE

The objective of this effort was to develop a reconfigurable micro-assembler
to provide the micro-programmer the capability to specify micro-instructions
in concise, meaningful terms. The micro-assembler adds an important capa-
bility to the SUMC software development facility since firmware micro-
programming is an essential part of the SUMC software development process.

II. TECHNICAL APPROACH

The implementation plan for the development of the micro-assembler was
predicated on the existing capabilities of the SUMC Reconfigurable Assembler.
Utilizing the reconfigurable assembler as a base, new directives and existing
directive modifications were implemented to provide the micro-assembly as a
new capability of the reconfigurable assembler.

III. MICRO-ASSEMBLER LANGUAGE CONCEPT

The micro-assembler language allows the specification of all micro-instruction
control field settings in one concise assembler source statement. Via instruc-
tion definition directives, "micromacs" are defined to the micro-assembler
which designate actual field settings for a selected combination of one or
more control fields. An assembler source statement then is composed of one
or more micromacs which collectively describe the operational function of a
micro-instruction. This capability to define micromacs provides open-ended
micro-assembler instruction sets and overall design flexibility.

This approach benefits the micro-programming task by upgrading the micro-
assembler language from control field terms, inherent in the micro-instructions,
to micro-instruction subfunction terms. It will additionally result in more
readable, self-documenting programs.

IV. MICRO-ASSEMBLER LANGUAGE SYNTAX

The micro-instruction assembler language appears very similar to a conventional
machine instruction assembler language. The machine instruction assembler
language has the characteristic of one operation specification per statement
whereas, the micro-instruction assembler language allows multiple operations
to be designated per statement.

The source statement format consists of two primary fields:

1. Label field

2. Command field

-1-

The optional label field consists of a symbol that is equated to the location
counter or a value. The command field is mandatory and is composed of an
operation/operand (micromac) list. Each operation may have multiple operands,
in which case they appear separated by commas.

Label Field Command Field

[symbol] operation [(operand)] [,operation[(operand)]....]

where: [] means "optional"

... means "and more of the same"

V. MICRO-ASSEMBLER UTILIZATION

The design objective for the creation of micromacs is to identify a complete
set of data gating functions that is a "natural" subset of the operational
capability of one micro-instruction. A micro-instruction then is constructed
from one or more micromacs that collectively describe the functions to be
performed.

A sample micromac instruction set has been designed and semantically described
for discussion purposes in Appendix A. This candidate micromac mnemonic list
has been functionally categorized as follows:

1. Main memory operations

2. Scratchpad memory operations

3. Adder operations

4. Register operations

5. Control operations

It should be noted that these categories are arbitrarily assigned for illustra-
tive purposes only and are based on the example micromac instruction set.

Since micromacs must be defined to the assembler, the mnemonic assignment and
format design is also arbitrary. This provides flexibility to the language
definer at language definition time as well as to the programmer at assembly
time.

Each micromac is defined in terms of micro-instruction fields and their res-pective value settings. Appendix B describes the micro-instruction field
values for the example micromac instruction set. Appendix D illustrates theassembler directives to implement these micromacs for micro-instruction
assembly. Appendix E is an example of a micro-instruction assembly utilizingthe example micromac instruction set.

-2-

VI. NEW ASSEMBLER DIRECTIVES AND FUNCTIONS

1. Option for Micro-Assembly

The OPTION statement has an additional operand to designate the
type of assembly, machine instruction level or micro-instruction level.

operand format:

TYPE = t

where t = NORMAL or MICRO

2. Rescan Source Operand

The IFORM directive has an additional operand for resetting the scan
cursor to multiply process a source statement operand. This provides
the ability to set multiple fields based on an operand since one field
can be set per scan.

operand format:

RC

3. Micro-Instruction Statement Processing

The internal statement processing logic is altered for micro-instructions
since they are composed of one or more micromacs. This necessitates
multiple IFORM's to be processed per statement.

4. Default Values for Micro-Instruction Fields

A new assembler directive has been implemented for specifying the default
values for micro-instruction fields. Default values are then used for
those fields that are not set by micromacs for a micro-instruction.

directive format:

Label Operation Operand

DFIELDS value=(start-end) [,value=(start-end)...

where: value - field default value

(start-end) - bit positions of a field

-3-

5. Description of IROM data for the Micro-Assembly Module

A new assembler directive has been implemented for specifying the IROM
data word structures that correspond to the micro-assembly module. The
object output occurs in the vector symbol dictionary section and is
utilized by the linkage editor to produce a listing of the IROM memory
map for the load module.

directive format:

Label Operation Operand

symbol VECTOR len,O-=op,L(start-end)[,value=(start-end)...]

where: len - No. bits in IROM data word

symbol - micro-assembly module (vector) entry point label

op - value for 0 (op code)

(start-end) - bit positions of the location (L) or a value
field in the IROM data word

value - field setting value

6. Micro-Assembly Diagnostics

A new assembler directive has been implemented for designating micro-
instruction fields to be diagnostically controlled by the assembler
for multiple value settings for one micro-instruction statement.

directive format:

Label Operation Operand

MFIELDS (start-end)[, (start-end)...]

where: (start-end) - bit positions of one of the multiple fields

-'4-

7. Object Output

There are two new records incorporated in the object output module.

Source Image Records

The source image records are generated as a subtype of the TXT object
section. Each source image record is formatted as follows:

COUNT CLASS SOURCE SOURCE SOURCE(N-1) F (3)r

WORD 1 WORD 2 WORD 3 WORD N

Count (word 1, bits 16-6)

The number of words remaining in the current source image record: the
number of words necessary to hold 96 characters.

Class (wordl, bits 4-1)

The text source image record sub-type: 3

Source (words 2-N)

The source image representing 96 characters in packed integer code format.

Vector Symbol Dictionary (VSD)

A new object type has been created to contain the vector (IROM data word)
description from the VECTOR assembler directive.

VSD records are formatted as follows:

TYPE
LENG (6) VECTOR ELEENT VECTOR ELEMENT

WORD 1 1ST VECTOR ELEMENT Nth VECTOR ELEMENT

Leng (word 1, bits 31-17)

The number of data words in the binary object record.

Type (word 1, bits 16-1)

The new VSD object type: 6

-5-

Vector Element

Each vector element is composed of three sub-types and contains the data
from one VECTOR assembler directive.

A. Control

COUNT CLASS
(1) i1) OP CODE

WORD 1 WORD 2

Count (word 1, bits 16-6)

The number of words remaining in the current control sub-type: 1

Class (word 1, bits 4-1)

The vector element control sub-type: 1

Op code (word 2, right justified)

The specified op code value.

B. Data Fields

I CLASS ISTRING N C2) ADDRESE VALUE

WORD 1 WORDS 2-5 WORDS 69) WORDS (N-3)-N

Bit string length (word 1, bits 31-17)

The length in bits of the vector word to be constructed from the
information contained in the attached address and value fields.

Count (word 1, bits 16-6)

The number of words remaining in the current data fields sub-type.

Class (word 1, bits 4-1)

The vector element data fields sub-type: 2

-6-

Address (words 2-5)

The address assigned by the assembler for the designated vector entry
point: represented by the normal "get/put" element object structure
as described in Section 5 of the Reconfigurable Assembler Detail
Specifications.

Value (subsequent 4 word blocks)

The values to be assigned to additional fields within a vector entry
word: also represented by the normal "get/put" element object
structure.

C. Identification

COUNT CLASS
(3) CAS CHARACTER STRING

WORD 1 WORDS 2-4

Count (word 1, bits 16-6)

The number of words remaining in the current identification subtype: 3

Class (word 1, bits 4-i)

The vector element identification sub-type: 3

Character string (words 2-4)

The character string identifying the entry point: the symbol from the
VECTOR directive, in 3 words in packed integer code format.

VII. USER MANUAL DOCUMENTATION

The user manual documentation for the micro-assembler has been created as
change pages to the SUMC Reconfigurable Assembler Users Manual. These are
contained in Appendix F.

-7-

APPENDIX A

SEMANTIC DESCRIPTION OF EXAMPLE MICROMAC INSTRUCTION SET

Main Memory Operations

RMM Read Main Memory

The contents of main memory specified by the adder are
gated to the memory register.

WMM Write Main Memory

The contents of the adder are gated to main memory
specified by the memory address register.

Scratchpad Memory Operation

WSM(x) Write Scratchpad Memory

The contents of the adder are gated to scratchpad memory
specified by x.

Adder Operations

LDA(x) Load Adder

Contents of x are gated to the adder.

LAI(x) Load Adder and Increment

Contents of x are gated to the adder and are incremented by one.

SAD(x,y) Save Add

Contents of x and y are gated to and added in the adder and the
result is gated to the PRR.

CAD(x) Continuation Add

Contents of x and the value in the PRR are gated to and added
to the adder.

Register Operations

ZMR Zero Multiplexor Reiters

Zeros are gated to the MQR, MAR and PRR.

LIR Load Instruction Register

Contents of the memory register are gated to the instruction
register.

APPENDIX A [CONTINUED]

Control Operations

JMP Jump to Micro Program

Control is transferred to the micro program associated with
the machine instruction operation code.

(NOTE: This operation normally is used to conclude an
instruction fetch.)

PNO Perform Next Operation

Control is passed to the next sequential micro instruction.

(NOTE: The assembler will select this operation automatically
when a control operation is notr specified by the pro-
grammer; typical programmer use of PNO is to idle one
memory cycle following an RMM.)

JMI(x) Jump to Micro Instruction

Control is transferred to the micro instruction specified by x.

JIN(x) Jump on Interrupt

If the interrupt flag lOG is on, transfer to the micro instruc-
tion spedified by x; otherwise the next sequential micro instruc-
tion is performed.

APPENDIX P
MICRO-INSTRUCTIOMJ FIELD VALUE PFSCRIPTION

MICROMAC MICRO-INSTR-UCTION FIELDS/VALUES (REFER TO APPENDIX C FOR FIELD DESCRIPTIONS)

RMM MOC=B'111'; RSEThB'001O'; MEM=B'1O'

WSML(X)] [ADDRESS=(X); AM=(X);] Wal; AC=B'OO'; POC=B'001'; MQMWBOO'; RSET=B'OOO1'
LAI(X) ADDRESS=(X); AM=(X); AC=(X); tMPXAluB'1001; MPXB1=B'11O'; ADDI=B'O11'; ADD2=B'O11V; FC1l;EALU=B'111100'

JMI(X) SEQ-IC=B'11O1'; XFER=(X)

PNO AC-B'11'; MPXAI=BIOO0'; EALtfB'111100'; sFQ-IC=B'00oo'

LIR MPXA1=B'100'; RSET=BIOOO0'; EALUtzB'1111OO'

JIN(X) SEQ-IC=zB'100'; XFER=(X)

SAD(X,Y) ADDRESS=(X); AM=(X); AC=(X); MPXB1=B'HO0'; MPXB2=(Y); ADDI=B'O11'; ADD2=B'OH';POC=B'001; RSET=B'0100'

CAD(X) ADDRESS=(X); AM=(X); AC=MX; MPXVOCO'; MPXB1=B'11O'; ADD1=B'011'; ADD2=B'011';RSET=B'O0O1'; EALU=BI111100'

M-R AC=~B'11'; NPXA1=B'100'; POC=B'000'; M'OC='0O0; MOM=B'00'; RSET=B'O100'; EALUfrBlI11100'
jr-op SEQ-IC=B'O1O1'

LDA(X) ADDRESS=(X); AM=B'01'; AC=(X); MPXA1=B'100'; MPXB1=B'110'; MPXB2=B'OO0oO'; ADD1=B'011';ADD2=B'011'; EALU=BIH1100'

-ri~ POC=B'O01'; RSET=B'O100'; MEM=-B'O1'

APPENDIX C

MICRO-INSTRUCTION FIELD DESCRIPTION

SPM MPXA1 MPXB1 MPXB2 ADDI ADD2 ALU 0 PRM MAM MQM RSET MEM
P M

FC I S S SADDRESS A M W A C MPXA1 MPXB1 MPXB2 ADD1 ADD2 C L 0 POC T C MOC T M RSET MEM0 5 6 7 8 9 10 11 13 14 16 17 21 22 24 25 27 28 29 30 31 33 34 35 3 39 40 41 42 45 46 47

ACC
EALU FPM SIC CNT ROM XFER ADD

MDECCPS A C
R E R A R H C N XFER

E I N R E F SEQ-IC C T
48 53 55 56 59 60 1 62 7T

ADDRESS = SPM address CL = Carry latch SPE = SPM exponent
AJ = SPM address modifier I0 = Input/output control MRE = Memory register exponentW SPM write control POC PRM operation control DE = Derived exponentAC SPM word access control PST = PRM shift type ER = Exponent registerPXAI = Multiplexer Al control PSC = PRM shift control CON = EALU controlMPXBI = Multiplexer B1 control MOC = MAM operation control CAR = Forced carry
MPXB2 = Multiplexer 82 control MST = MAM shift type PRE = PrecisionADDI Arithmetic unit #1 operation MQM = MQM operation control SHF = FPM shift allowADD2 = Arithmetic unit #2 operation RSET = Register set SEQ-IC = Sequencer iteration controlFC = Force carry MEM = Memory control ACC = ACCS control signal

CNT = CNT control signal
XFER = ROM transfer address

APPENDIX D

EXANIPLE SUMC MICROINS1RUCTIUN DEFINITION.

ODE MICRO
SIZE 1024,72
MFIELDS (0-5),(6-7),(8),(9-10),(11-13),(14-16),(17-21), *

(22-24),(25-27),(28) (29),(0),(31-33),(34) (35), *
(36-38),(39),(40-41),(46-47),(48-53),(54),(55),
(56-59),(60),(61),(62-71)

SPMAC CCODES 'PC' = O, 'A' = 0O 'B' = 39, 'X 3
MPXB2 CCODES '0' = , 'MR = X'11,
SPMAD CCODES 'PC' = X'10O' 'A' =0, 'B' = X'10', 'X' = X'14'
SPMAM CCODES 'PC' = O, 'A' = 1, 'B' = 2, 'XI = 3

IKMM IFORM 72,0=(36-39),X'2'=(42-45),A'2'=(46-47)
IPNU IFORM 72, 0 = (48-53),X'3'=(9-1U), X'4' = (11 - 13),0=(56-59)
ILIR TFORM 72, 0 = (48-53), 8 = (42-45), 4 = (11-13)
IZMR IFORM 72,0=(48 - 53), 4=(11-13),9=(42-45),3=(9-10),

0 = (31-33), 0 = (36-39), U = (40-41)
IJMI IFORM 72, 0 = (56-59),M=(L(62-71))
IWMM IFORM 72,0= (31-33),4=(42-45),1=(46-47)
iWSM IFORM 72, 0 = (31-33),SPMAD=O-4),C,SPMAM(6-7),0=(9-10),

1=(8),0=(40-41),1=i42-45)
ISAD IFUHM 72, O = (42-45),SPMAD =(0-5),tC,SPMAM =(6-7)*RC, *

SPMAC =(9-1i),PXB2=(17-21),6=(14-16),3=(22-24),
3=(25-27),=(31-33)

ICAD IFORM 72, 0 = (42-45)SPMAD=(0-5),HSPMAM=(6-7),RC,
SPMAC=(9-10) 0=(11-13),6=(1-16) ,3=(22-24),3=(25-27), *
1=(42-45),X'3C'=(48-53)

ILDA IFORM 72, 0 = (6-7),SPMAD=(0'5),MC,SPMAC=(9-10),4=(1113),
6=(14-16),0=(17-21),3=(22-24,3=(25-27),X93C'=(48-53)

IJMP IFORM 72, 0 = (56-59)
ILAI IFORM 72, 0=(28),SPMAD=(0-5) RCbPMM=(6-7) RCX'3C'=(48-53),*

SPMAC=(9-10),t4=(I-1)961)-=416),3=(22-24),3=(2527)
IJIN IFORM 72, 0 = (56-59), = (L(62-71))

RMM OPDEF 7, IRMM
PNO OPDEF X'3C', IPNO
LIR CPOEF X'3C', ILIR
ZMR OPDEF X'3C', IZMR
JMP OPDEF X'5', IJMP
WMM OPOEF X'1', IWMM
WSM OPOEF X'l', IWSM
LAI OPDEF lt ILAI
JIN OPCEF 8, IJIN
SAD OPDEF 4r ISAD
CAD OPOEF AD ICAD
LDA OPDEF 1, ILDA
JMI OPUEF 13, IJMI

-12-

APPENDIX E

EXAMPLE SUMC MICROINSTpUCTIUN CODL

START

* FETCH NEXT MACHINE INSTRUCIION

FETCH LAI(PC),WSM,RMMJIN(IOG)
PNO
LIRSAO(X D)
CAD(B)vRMM

* STORE ACCUMULATOR

STA LDA(A),WMMvJMI(FETCH)

* STORE BASE REGISTER

SIB LDA(B),WMM,JMI(FETCH)

* STORE INDEX REGISTER

STX LDA(X),WMMJMI(FETCH)

* INTERRUPT HANDLING ROUTINE

ORG X'390'
IOG EQU

END

S -13-

APPENDIX F

USER MANUAL CHANGE PAGES

The following pages are replacements for the corresponding pages in the SUMC
Reconfigurable Assembler Users Manual.

TABLE OF CONTENTS
(CONTINUED)

Page

Production Statements 91
Parameter Symbols 92
Procedure Levels 96
Comments Statements 97
Using SET Symbols in Procedures 97

SECTION 11. CONDITIONAL ASSEMBLY STATEMENTS 98

SEQUENCE SYMBOLS 98

GOTO Statement 99
GOIF Statement 100
RPT Statement 103
TAG Statement 105

USING CONDITIONAL ASSEMBLY IN PROCEDURES 106

SECTION 12. DIAGNOSTIC CONTROL STATEMENT 108

NOTE Statement 109

USING DIAGNOSTIC CONTROL IN PROCEDURES 110

SECTION 13. MICRO-ASSEMBLY STATEMENTS 111

DFIELDS Statement 112
MFIELDS Statement 113
VECTOR Statement 114

19R

OPTION

Function

Designate assembly requirements for source library input, automatic assembly
definition, listing output and/or object output.

Format

Name Operation Operand

blank OPTION list

Description

list - choices may be specified from one or more of the
following options:

library - controls the availability of a source
statement library input data set.

NOLIB : inhibit source library input

LIB=x : accept a user library named x

LIB = SYSLIB : accept the standard system library

segmen - controls automatic assembly definition from
a selected library input.

NOSEG : inhibit the processing of an assembly
definition from the source library.

SEG=y : copy and process a user supplied
library segment - this segment of
source input should contain de-
finitions of a machine configuration,
an instruction set, and appropriate
system macros.

SEG = SYSSEG : copy and process the assembly defin-
ition contained in the standard
system library segment.

listing - controls the output of an assembly listing.

LIST[([n[, XREF I])]: prepare an assembly listing
NOXREF I with n lines per page,

consistent with the sub-
sequent use of the PRIFT
statement; also print (XRF)
or inhibit the printing
(NOXRE) of the progrea
symbol cross-roforencc linto

U'

IOPTIONI 20R

NOLIST : inhibit the output of an assembly listing.

ERROR=s : print all level s diagnostics and higher

COMP=p : print the target computer name: p on columns 1-8
of the title line on each page of the assembly listing.

DATE=d : print the date: d on the assembly listing if the date
is not provided by the host operating system.

object - controls the output of an object program deck.

DECK : prepare an object output deck that is named and identi-
fied according to the subsequent use of the START
statement.

NODECK : inhibit the output of an object program deck.

MODE=m : assemble this object program as relocatable (m=REL)
or absolute (m=ABS).

type - controls the type of assembly

TYPE=t this assembly is normal machine level (t=NORMAL) or
micro level (t=MICRO).

Example

OPTION LIB=SYSTEMD,SYSSEG,NODECK,LIST

The options stipulated in this example require the assembler to utilize the SYSTEM7
source library input data set and to automatically retrieve and assemble the machine
configuration, instruction set and system macros that are stored under the standard
assembly definition name: SYSSEG. An object deck is not wanted for this assembly,
while the assembly listing is desired, and the type of assembly is normal machine level.

Usage

One OPTION statement may be specified for each program that is assembled; its use is
optional. When omitted, the following options are assumed: TYPE=NORMAL, LIB=SYSLIB,
SEG=SYSSEG, LIST(52,NOXREF), ERROR=l, COMP=SUMC, NODECK, MODE=REL. Options may be
specified in any order and the OPTION statement must be the first statement in the
program. The library option must be the same for separate assemblies that are part
of the same job.

The naming of a library segment in the option statement prevents the programmer from
having to define the assembly process himself. More specifically, the programmer
may not redefine a target computer, its mnemonic operation codes, or any of its
system macros if he has caused their definition via the OPTION statement. But, in
this case, he may extend the instruction set by defining supplementary mnemonic
operation codes and instruction formats, he may define additional macro instructions,
and he may specify the availability of memory and registers to the program under
assembly.

/7

SOPDEF | 73R
Function

Specify the numeric operation code(s) and the object instruction format(s) that
correspond to a source instruction mnemonic operation code.

Format

Name Operation Operands

mnemonic OPDEF opcode,f6rmats[,opcode,formats..]

Description

mnemonic - the symbolic name of a source instruction operation code.

opcode - the numeric value of the source instruction operation code -
this value gives meaning to operand form 0 in the IFORM
assembler-instruction for a machine level assembly.
Note - this operand field is omitted during a micro-assembly.

formats - identification of one or more instruction formats as:

fname
(fname[,fname...)

fname - the label name of an appropriate IFORM assembler-in-
struction with which source instruction operands
are formatted into appropriate bits of an equivalent
machine instruction.

Example

LA OPDEF X'3F',TYPE1

The mnemonic operation code LA is defined as a hex 3F for a machine level assembly
and its source operands are to be processed according to a TYPE1 IFORM pseudo-
operation.

LA OPDEF X'3FO',SHORT,X'3Fl ',(LONG1,LONG2)

The mnemonic operation code LA is defined as a hex 3FO for a machine level assembly
if all of its source operands are specified in the SHORT IFORM assembler-instruction.
Otherwise, LA is defined as a hex 3F1 for either LONG1 or LONG2 IFORM assembler-
instructions depending on the presence of optional symbolic operand forms that
cannot be contained in a short instruction format.

LA OPDEF IF1

The mnemonic operation code LA is defined and its source operands are to be
processed according to an IF1 IFORM for a micro-assembly.

Usage

For each source instruction the designated machine instruction formats will be
processed from left to right until either a successful assembly has been performedor until all of the available formats have failed. Therefore, multiple IFORM
assembler-instiuction names should be ordered consistent With the syntactic
priorities of the allowable symbolic operands.

This assembler instruction must follow the referenced IFORM assembler instructionn.

76R

IFORM

Function

Specify an object instruction format for one or more source instruction mnemonic
operation codes.

Format

Name Operation Operands

format IFORM length,O=(start-end) ,type =(subtype(start-end)[,]...]

Description

format - the symbolic name of an instruction form - this name may be
referenced by the OPDEF assembler instruction.

length - the number of bits in this instruction format - this value
must be divisible by or into the size of the location counter
addressing unit (see the SIZE statement).

0= - an operation code reference - operation codes are symbols that
appear in a source statement mnemonic operation field and have
been equated to values via an OPDEF assembler instrubtion.
The IFORI assembler instruction incorporates these assigned
operation code values into machine instructions by means of
this symbolic operation code reference for a machine level
assembly.
Note - this operand field is omitted for a micro-assembly.

(start-end) - location of the receiving field in the assembled machine
instruction. The bit positions in the generated machine
instruction bit string into which the value of the
referenced source operand will be "OR"ed.

The allocation of a one-bit field may be designated by omitting
the optional "end" specification: e.g., (start).

type - a symbolic operand form name expressed as:

scan
register
control-value
control-code
control-function
class-code
memory-reference

Most symbolic operands that are appropriate for a given machine
instruction format are required. When applicable, particular
symbolic operands may be designated as being "optional" by
enclosing their type and field description(s) in parentheis: e.g.o

(type = (start-end)).

SECTION 13. MICRO-ASSEMBLY STATEMENTS

The micro-instruction format appears very similar to the machine-instruction
format as described in Section 9. Whereas the machine-instruction format has the
characteristic of one operation specification per statement, the micro-instruction
format allows multiple operation specifications per statement, separated by comas.
The operand field for each operation specification immediately follows the
operation mnemonic and must be enclosed in parentheses. The operand field may
contain multiple operands, separated by commas.

The same directives utilized for target computer instruction set definition applies
for the micro-instruction definition as described in Section 9.

Micro-Instruction Default Field Values

Micro-Instruction fields may be designated for initialization with a value with
the DFIELDS directive. The specified field value will occur in the designated
field if the IFORMs processed for the micro-instruction do not reference the same
field.

Micro-Assembly Diagnostic Control

Micro-Instruction fields may be designated for diagnostic control by the assembler
with the MFIELDS directive. Specified fields will be monitored for multiple field
references with conflicting field values during the IFORMs processed for a micro-
instruction.

Micro-Assembly Vector Definition

The micro-program entry point vectors are defined via the VECTOR directive. This
provides the capability to describe the control core contents for linkage to the
micro-assembly module.

SO

112

DFIELDS

Function

Designate micro-instruction fields that are to be initialized with the specified
value before each micro-instruction statement assembly.

Format

Name Operation Operand

DFIELDS value=(start-end)[,value=(start-end)...]

Description

value= - the initialization for the field.

(start-end) - the beginning and ending bit positions of the field to
receive the value.

Example

DFIELDS 7=(1-5),X'A'=(21-24)

This statement specifies the micro-instruction fields defined as bit positions
1-5 and 21-24 to be initialized with the values 7 and X'A' before each micro-
instruction statement assembly. Any micro-instruction statement may override
the default value in the IFORM processing.

This assembler statement must follow the START statement in the source module.
There is no limit to the number of DFIELDS statements within a source module.

113

Function

Designate micro-instruction fields for diagnostic control by the assembler.

Format

Name Operation Operand

MFIELDS (start-end)[,(start-end)...]

Description

(start-end) - the beginning and ending bit positions of the field
to be monitored.

Example

MFIELDS (12-15), (19), (31-42)

This statement specifies the micro-instruction fields defined as bit positions
12-15, 19, and 31-42 to be monitored by the assembler for multiple field ref-
erences with conflicting values during a micro-instruction statement assembly.

Usage

This assembler statement may occur anywhere in the source module. There is no
limit to the number of MFIELDS statements within a source module.

114

VECTOR

Function

Define the control core entry contents for linkage to the micro-assembly module.
The object that is generated for this directive serves to construct a listing
of the control core contents.

Format

Name Operation Operand

symbol VECTOR len,O=op,L=(start-end)[,value-(start-end)...]

Description

symbol - micro-assembly module statement label which may be
internally or externally defined.

len - No. bits in IROM data word

0= - designates the op code operand

op - op code value

L= - designates the location operand

(start-end) - the bit positions of the entry field

value - field setting value

Example

ADD VECTOR ll,0=X'lA',L=(3-l),1=(2)

This statement defines a control core entry structure for the micro-assembly
module label ADD. The entry is 11 bits in length, the micro-assembly location
for statement label ADD goes into bits 3-10 and bit 2 is always set to 1.
The op code for linkage to the statement label ADD is X'lA'.

Usage

This assembler statement must follow thteSTART statement in the source module.
There is a limit of 256 VECTOR statements per assembly.

